Chapter 7: Transmission Media

Business Data Communications,

Classes of Transmission Media

Conducted or guided media

 use a conductor such as a wire or a fiber optic cable to move the signal from sender to receiver

Wireless or unguided media

 use radio waves of different frequencies and do not need a wire or cable conductor to transmit signals

Design Factors for Transmission Media

- Bandwidth: All other factors remaining constant, the greater the band-width of a signal, the higher the data rate that can be achieved.
- Transmission impairments. Limit the distance a signal can travel.
- Interference: Competing signals in overlapping frequency bands can distort or wipe out a signal.
- Number of receivers: Each attachment introduces some attenuation and distortion, limiting distance and/or data rate.

Electromagnetic Spectrum for Transmission Media Frequency (Hertz) 10² 10^{4} 10^{5} 10^{10} 10^{3} 10⁶ 107 10^{8} 10⁹ 10^{11} 10^{12} 10^{13} 10¹⁴ 10^{15} ELF VF VLF LF MF HF VHF UHF SHF EHF Power and telephone Microwave Infrared Radio Visible Rotating generators Radios and televisions Radar Lasers light Musical instruments Electronic tubes Microwave antennas Guided missiles Magnetrons Rangefinders Voice microphones Integrated circuits Cellular Telephony Twisted Pair-Optical Fiber Coaxial Cable FM Radio AM Radio Terrestrial and TV and Satellite Transmission 10^{-2} 10^{-4} 10⁻⁵ Wavelength 10⁵ 10^{3} 10^{2} 10^1 10^{0} 10⁻³ 10⁻⁶ 10⁶ 10^{4} 10^{-1} in space (meters) ELF = Extremely low frequency MF = Medium frequency UHF = Ultrahigh frequency VF = Voice frequency HF = High frequency SHF = Superhigh frequency VLF = Very low frequency VHF = Very high frequency EHF = Extremely high frequency LF = Low frequency

Guided Transmission Media

- Transmission capacity depends on the distance and on whether the medium is point-to-point or multipoint
- Examples
 - twisted pair wires
 - coaxial cables
 - optical fiber

Twisted Pair Wires

Consists of two insulated copper wires arranged in a regular spiral pattern to minimize the electromagnetic interference between adjacent pairs

 Often used at customer facilities and also over distances to carry voice as well as data communications

Low frequency transmission medium

Types of Twisted Pair

STP (shielded twisted pair)

 the pair is wrapped with metallic foil or braid to insulate the pair from electromagnetic interference

UTP (unshielded twisted pair)

 each wire is insulated with plastic wrap, but the pair is encased in an outer covering

Ratings of Twisted Pair

- Category 3 UTP
 - data rates of up to 16mbps are achievable
- Category 5 UTP
 - data rates of up to 100mbps are achievable
 - more tightly twisted than Category 3 cables
 - more expensive, but better performance

More expensive, harder to work with

Twisted Pair Advantages

- Inexpensive and readily available
- Flexible and light weight
- Easy to work with and install

Twisted Pair Disadvantages

- Susceptibility to interference and noise
- Attenuation problem
 - For analog, repeaters needed every 5-6km
 - For digital, repeaters needed every 2-3km
- Relatively low bandwidth (3000Hz)

Coaxial Cable (or Coax)

- Used for cable television, LANs, telephony
- Has an inner conductor surrounded by a braided mesh
- Both conductors share a common center axial, hence the term "co-axial"

Coax Layers

outer jacket (polyethylene) shield (braided wire)

insulating material

copper or aluminum conductor

Coax Advantages

Higher bandwidth

- 400 to 600Mhz
- up to 10,800 voice conversations
- Can be tapped easily (pros and cons)
- Much less susceptible to interference than twisted pair

Coax Disadvantages

High attenuation rate makes it expensive over long distance

Fiber Optic Cable

- Relatively new transmission medium used by telephone companies in place of longdistance trunk lines
- Also used by private companies in implementing local data communications networks
- Require a light source with injection laser diode (ILD) or light-emitting diodes (LED)

Fiber Optic Layers

Consists of three concentric sections

plastic jacket glass or plastic cladding

Fiber Optic Types

multimode step-index fiber

the reflective walls of the fiber move the light pulses to the receiver


multimode graded-index fiber

 acts to refract the light toward the center of the fiber by variations in the density

single mode fiber

the light is guided down the center of an extremely narrow core

fiber optic multimode step-index

fiber optic multimode graded-index

fiber optic single mode

Fiber Optic Advantages

- greater capacity (bandwidth of up to 2 Gbps)
 smaller size and lighter weight
 lower attenuation
 immunity to environmental interference
 highly secure due to tap difficulty and
 - lack of signal radiation

Fiber Optic Disadvantages

expensive over short distance
 requires highly skilled installers
 adding additional nodes is difficult

Wireless (Unguided Media) Transmission

- transmission and reception are achieved by means of an antenna
- directional
 - transmitting antenna puts out focused beam
 - transmitter and receiver must be aligned
- omnidirectional
 - signal spreads out in all directions
 - can be received by many antennas

Wireless Examples

- terrestrial microwave
- satellite microwave
- broadcast radio
- infrared

Terrestrial Microwave

- Ised for long-distance telephone service
- uses radio frequency spectrum, from 2 to 40
 Ghz
- Parabolic dish transmitter, mounted high
- used by common carriers as well as private networks
- requires unobstructed line of sight between source and receiver
- curvature of the earth requires stations (repeaters) ~30 miles apart

Terrestrial Microwave Applications

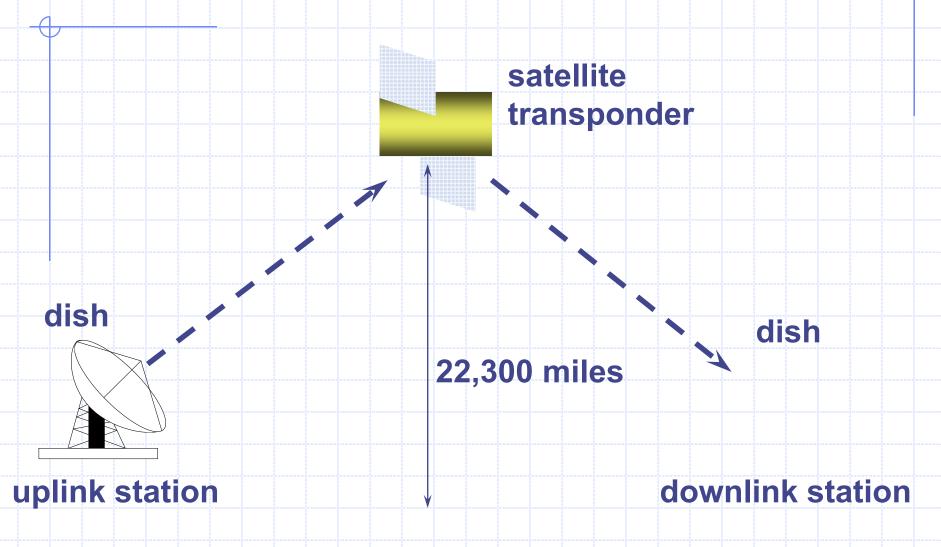
Television distribution
 Long-distance telephone transmission

Private business networks

Microwave Transmission Disadvantages

- Ine of sight requirement
- expensive towers and repeaters
- subject to interference such as passing airplanes and rain

Satellite Microwave Transmission


- a microwave relay station in space
 can relay signals over long distances
 geostationary satellites

 remain above the equator at a height of
 - 22,300 miles (geosynchronous orbit)
 - travel around the earth in exactly the time the earth takes to rotate

Satellite Transmission Links

- earth stations communicate by sending signals to the satellite on an uplink
- the satellite then repeats those signals on a downlink
- The broadcast nature of the downlink makes it attractive for services such as the distribution of television programming

Satellite Transmission Process

Satellite Transmission Applications

- television distribution
 - a network provides programming from a central location
 - direct broadcast satellite (DBS)
- Iong-distance telephone transmission
 - high-usage international trunks
- private business networks

Principal Satellite Transmission Bands

C band: 4(downlink) - 6(uplink) GHz the first to be designated Ku band: 12(downlink) -14(uplink) GHz rain interference is the major problem Ka band: 19(downlink) - 29(uplink) GHz equipment needed to use the band is still very expensive

Fiber vs Satellite

Table 7.6 A Comparison of Optical Fiber and Satellite Transmission

Characteritic	Optical Fiber	Satellite
Bandwidth	Theoretical limit of 1 terahertz; currently 1–10 GHz	Typical transponder has a bandwidth of 36–72 MHz
Immunity to interference	Immune to electromagnetic interference	Subject to interference from various sources, including microwave
Security	Difficult to tap without detection	Signals must be encrypted for security
Multipoint capability	Primarily a point-to-point medium	Point-to-multipoint communications easily implemented
Flexibility	Difficult to reconfigure to meet changing demand	Easy to reconfigure
Connectivity to customer site	Local loop required	With antenna installed on customer premises, local loop not required

Radio

- radio is omnidirectional and microwave is directional
 Radio is a general term often used to encompass frequencies in the range 3 kHz to 300 GHz.
- Mobile telephony occupies several frequency bands just under 1 GHz.

Infrared

 Uses transmitters/receivers (transceivers) that modulate noncoherent infrared light.
 Transceivers must be within line of sight of each other (directly or via reflection).
 Unlike microwaves, infrared does not penetrate walls.